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Experimentally it is possible to manipulate the director in a �chiral� smectic-A elastomer using an electric
field. This suggests that the director is not necessarily locked to the layer normal, as described in earlier papers
that extended rubber elasticity theory to smectics. Here, we consider the case that the director is weakly
anchored to the layer normal assuming that there is a free energy penalty associated with relative tilt between
the two. We use a recently developed weak-anchoring generalization of rubber elastic approaches to smectic
elastomers and study shearing in the plane of the layers, stretching in the plane of the layers, and compression
and elongation parallel to the layer normal. We calculate, inter alia, the engineering stress and the tilt angle
between director and layer normal as functions of the applied deformation. For the latter three deformations,
our results predict the existence of an instability towards the development of shear accompanied by
smectic-C-like order.
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I. INTRODUCTION

Smectic-A �Sm-A� liquid crystal elastomers incorporate
the anisotropic properties of liquid crystals, and the rubber
elasticity of polymer networks. The formation of a smectic
layer structure by the mesogens is the cause of their particu-
larly anisotropic elastic properties. These elastomers have
been synthesized, and their elastic properties explored
through mechanical testing. Nishikawa and Finkelmann
found that a class of strongly coupled Sm-A systems behave
like two-dimensional �2D� elastomers in the layer plane �1�
but that they are extremely stiff when stretched parallel to the
layer normal. At a threshold of a few percent strain along the
layer normal, the elastomer becomes mechanically softer,
and turns opaque �2� because of layer rotation. This behavior
is reversible when the strain is removed. Other weakly
coupled smectics also have thresholds, but not to layer rota-
tion, and do not have the same extreme mechanical aniso-
tropy �3�. A threshold has also been reported in Sm-A mate-
rials with a shorter correlation length of the smectic layers,
but here the sample remains transparent after the threshold
�4�. Typically, smectic elastomers are synthesized in the form
of films, either with the layer normal in the plane of the film
�1,2,4� or with the layer normal perpendicular to the film
plane �5�. However, mechanical testing has only been per-
formed on the first of these two types. The second type
would be useful for performing mechanical compression
tests parallel to the layer normal.

Experimental study of the electroclinic effect in Sm-A
elastomers suggests that the layer normal and the director
can be manipulated with an electric field and indicates that
the two are not necessarily rigidly locked �6�, at least on the
scale of electrical energies, as a Lagrangian elasticity theory
developed in Ref. �7� assumes. Since rubber elastic energies
are typically larger than those of electric fields, one would
expect mechanical fields also to induce relative rotations. In
fact, such relative rotation has been observed experimentally
in very recent shear experiments by Kramer and Finkelmann
�8�.

On the theoretical side, a model of Sm-A elastomers has
been constructed using nonlinear rubber elasticity extended
to smectics �9� that describes the results of Nishikawa and
Finkelmann well. This model rigidly locks the director to the
layer normal. As mentioned above, a model based on La-
grangian elasticity theory has also been developed �7�. This
model fits well with the data, however, unlike �9�, it allows
in principle for the relative rotation of the director and the
layer normal. Triggered by experiments of Kramer and
Finkelmann �8,10� where in-plane shears were applied to
Sm-A elastomers, the rubber elastic approach has been ex-
tended �11� very recently to the case of soft anchoring. In
Ref. �11�, we used this model specifically to study the shear
experiments of Kramer and Finkelmann. In the present pa-
per, we employ this model to study various shear and stretch
deformations.

The plan of presentation is the following: First, we review
the extension of nonlinear rubber elasticity theory to smec-
tics. The fundamental distortions of imposed in-plane stretch
and in-plane shear are then explored. Armed with these
modes of deformation, we then explore imposed extension
and compression along the layer normal which are complex
but decomposable into the fundamental modes.

II. MODEL FREE ENERGY

The model free energy reviewed here is generalization of
the original rubber elastic model of smectics �9�, and was
developed originally in Ref. �11�. It has contributions from
the background nematic elasticity, and from the compression
or dilation of the layers. In addition to these two terms, we
include here a potential that penalizes the deviation of the
director from the layer normal �12�:

f = f trace + f layer + f tilt. �1�

The nematic component of the free energy density has been
widely discussed �13�, and is given by
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f trace =
1

2
�Tr��= · �=0 · �= T · �=−1� , �2�

where � is the isotropic state shear modulus, �= is the defor-
mation gradient tensor, �=0=�= + �r−1�n0n0 is the step-length
tensor before the deformation has been applied, �=−1=�=
+ �1 /r−1�nn is the inverse of the step-length tensor after the
deformation has been applied, and �= is the unit tensor. The
step-length tensor is proportional to the second moment of
the Gaussian distribution of anisotropic chains making up the
rubbery network. The anisotropy of the chains is parameter-
ized by r. The smectic layers embedded in the elastic matrix
give rise to the following contribution to the free energy

f layer =
1

2
B� d

d0 cos �
− 1�2

, �3�

where B is the layer spacing modulus �typically larger than
in liquid smectics�, d is the current layer spacing, d0 is the
natural layer spacing, and � is the angle between the layer
normal and the director. For smectics where the layers are
strongly coupled to the matrix, changes in layer spacing can
be derived by analyzing how the embedded layer normal
deforms in step with the elastic matrix. The layer normal k
and layer spacing are given by �9�

k =
�= −T · k0

��= −T · k0�
;

d

d0
=

1

��= −T · k0�
, �4�

where k0 is the initial layer normal. The deformation of the
layer normal outlined above affinely follows that of the rub-
ber matrix because the energetic penalty of not doing so
scales with the system size in the microscopic model de-
scribed in �9�. The cos � term reflects the projection of the
rods making up the layer spacing contracting as the director
tilts. Note that this term does not include the finite thickness
of the rods, since as �→� /2 then d→0 to avoid a diverging
energy penalty, and so the layer thickness tends to zero.
However, physically there must be a transition to a constant
layer thickness as the angle � increases, i.e., there must be
forces preventing �→� /2 independent of the layer-
compression term.

The contribution f tilt= f tilt�sin �� to the free energy density
penalizes the deviation of the director from the layer normal.
To ensure a finite layer thickness, see the discussion above,
the general form of the tilt contribution will be such that
f tilt�sin ��→� as �→� /2. When expanded to leading order
in sin �, it reduces to

f tilt =
1

2
at sin2 � , �5�

where at is a coefficient that vanishes as the A-C transition is
approached. For simplicity, we will work in the following
with the simple phenomenological form �5�.

Typical values of the constants are B�107 Pa, �
�105–106 Pa, and at�105–106 Pa. The value of at is esti-
mated from the experiments by Brehmer et al. �14�, which
indicates that at�105 Pa, and Archer and Dierking �15�,
which produces a value of at�106 Pa. These are results for
the liquid state which we expect to be a good estimate for

liquid crystal elastomers since at describes a local, molecular
property. In determining the main features of the material
properties, only the ratios of these values are important. Con-
sequently we will denote

b = B/� and c = at/� . �6�

Note that the limit c→� locks the director to the layer nor-
mal. On the other hand, when c is small as it would be near
the A-C transition, deviations of � from zero can be large.
Dominating these energy scales is that for volume change.
The bulk modulus is, as for all rubbers, of the order of
109 Pa which means that deformations are at constant vol-
ume, that is det��= �=1 rigidly.

Note that a semisoft term could also be included of the
form

fsemi =
1

2
��Tr��= · ��= − n0n0� · �= T · nn� . �7�

The value of � can be estimated from either the soft plateau
in elastomers, or from the electroclinic effect, and is typi-
cally found to be ��0.1. It turns out that this term does not
affect the qualitative features of the mechanic response to the
deformations that we consider. We will discuss this issue
briefly and exemplarily in our analysis of xz shear, but we
will not scrutinize the effects of the semisoft term in detail.

III. EXAMPLE GEOMETRIES

Three deformation geometries will be considered here,
and are shown in Fig. 1, together with the initial director and
layer normal which are assumed to be along z.

The model described above has a complicated form be-
cause incompressibility forces the appearance of a cofactor
of the deformation gradient �= . It is possible to eliminate the
cofactor dependence by recognizing that the director and
layer normal move in a 2D subspace, which we take to be the
xz plane �where z is parallel to the initial layer normal�. Then
all the actual calculations can be made using a 2D represen-
tation of this model outlined in appendix.

A. Imposed �xz

First we examine the imposed shear deformation as de-
picted in Fig. 1. Here the following will be used:

λxz λxx λzz

x

z

FIG. 1. The imposed shear, in-plane elongation, and out of plane
elongation �and compression� geometries that will be considered in
this paper.
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�= = 	�xx 0 �xz

0 �yy 0

0 0 �zz

 ;

n0 = �0,0,1�
n = �sin 	,0,cos 	� .

�8�

To ensure incompressible response, det��= �=1, one takes
�yy=1 / ��xx�zz�. For this choice of �= , the new layer normal is
�= −T ·k0=k0 /�zz. Layers are unrotated, but generally dilated
by �zz. The deviation of n from k0, that is �, can thus be
identified with the usual 	, the rotation of the director. We
use 	 until later when there is layer rotation and the distinc-
tion must be drawn. On substituting these expressions into
the free energy density we obtain the following expression:

f =
1

2
B� �zz

cos 	
− 1�2

+
1

2
at sin2 	

+
1

2
�� 1

�xx
2 �zz

2 + �xx
2 �cos2 	 +

1

r
sin2 	�

+ ��zz cos 	 + �xz sin 	�2 + r��zz sin 	 − �xz cos 	�2� .

�9�

For this �= , the additional semisoft term in the free energy is
fsemi=

1
2���xx

2 sin2 	. It does not change the qualitative be-
havior of the elastomer, so will not be considered here.

This free energy should now be minimized with respect to
	, �xx, and �zz. It is straightforward to find the minimal value
of �xx:

�xx
4 =

1

�zz
2 �cos2 	 +

1

r
sin2 	� . �10�

We now assume that B is much larger than at and � so that
we can approximate �zzcos 	. Such an identification is
forced by the first term of Eq. �9� when its coefficient is
large.

The response for �xz
1 will involve a small rotation of
the director away from the layer normal, and it can be cal-
culated to leading order by assuming that 	
1 and �zz�1.
The minimization of Eq. �9� gives �recalling that c is the
reduced angular modulus at /��:

	 
�r − 1�r�xz

cr + �r − 1�2 , �11�

f 
3�

2
+

�

2

cr2�xz
2

cr + �r − 1�2 , �12�

�  �
cr2�xz

cr + �r − 1�2 , �13�

where � is the nominal or engineering stress �f /��xz.
Asymptotic analysis can also be performed for large defor-
mations, but it should be remarked that whilst the assump-
tions of very large strains seem unrealistic, the results ob-
tained from asymptotic methods are usually applicable to a
much larger region than anticipated. Taking �xz�1, and
�zz
1, or equivalently assuming director rotation is now

large, 	=� /2− with  small, we have to leading order:

�zz 
1

�r − 1�1/3r1/6�xz
2/3 , �14�

f 
�

2
�xz

2 , �  ��xz. �15�

Shear across an unmoving director has a modulus r�, as for
instance inspection of Eq. �13� in the c�1 limit reveals.
Here in this unphysical limit, the modulus has dropped to �,
indicative of minimal chain extension in the gradient direc-
tion of the shear. As discussed above, this extreme director
rotation is an artifact of the reduction of f tilt, which in its full
form has to suppress the approach of � to � /2 on physical
grounds.

To illustrate the intermediate features of the model, Fig. 2
shows the numerical solution to the minimization problem,
and Fig. 3 shows an illustration of the deformation of the
elastomer. Since the xx and zz response is independent of the
sign of �xz, on symmetry grounds for small imposed shear,
�xx−1��xz

2 and �zz�−�xz
2 . Rotation does sense the sign and

hence 	��xz. For small values of c, 	 saturates at � /2 for
large deformation. By contrast, for large values of c the di-
rector rotation is suppressed, in agreement with �9�.

In the shear experiments of Kramer and Finkelmann
�8,10� the applied deformations are similar to the one that we
just discussed. There is, however, the difference that these
experiments use setups �tilter and slider� that pre-set �zz as

σ/µ

0

1

2

3

4
0 0.5 1 1.5

λxz

λxx

1

1.1

1.2

1.3

0 0.5 1 1.5
λxz

λzz

0.7

0.8

0.9

1
0 0.5 1 1.5

λxz

θ

0
0.2
0.4
0.6
0.8
1

0 0.5 1 1.5
λxz

FIG. 2. �Color online� The nominal shear stress, the deformation
components �zz and �xx, and the rotation angle 	 of the director for
an imposed �xz deformation. The dashed �red� line has �b ,c ,r�
= �60,100,2�, the solid �green� line has �60, 1, 2�, and the dotted
�blue� line has �1, 1, 2�.

0 1λxz

FIG. 3. An illustration of the rotation of the director, and the
sympathetic shears for an imposed �xz deformation, with �b ,c ,r�
= �60,1 ,2� as on the solid �green� line in Fig. 2.
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shear proceeds, and hence free relaxation of �zz as above is
not possible. A detailed analysis of these experiments is
given in �11�.

B. Imposed �xx

The deformation tensor is still that of Eq. �8�, and the free
energy takes the same form Eq. �9� as in the previous sec-
tion. The relaxation behavior of the system is sketched in
Fig. 4, which illustrates several interesting features including
a threshold at which rotation of the director starts, and a
nonmonotonic stress-strain curve.

Analytically it is possible to obtain an expression for the
threshold value of �xx at which the instability starts. Minimi-
zation of the free energy in Eq. �9� with respect to �xz results
in the following expression:

�xz =
�r − 1��zz cos 	 sin 	

sin2 	 + r cos2 	
. �16�

We again consider the case where B�at ,�, and so �zz
cos 	. This leaves only the variable �zz to be minimized
over in the problem. For large B the threshold occurs when
there is a minimum at �zz=1, which results in the following
condition on �c, the critical value of �xx,

�c
4�r − 1� − �c

2�cr − 1� − r = 0. �17�

Consequently, the threshold is given by

�c
2 =

�cr − 1� + �4�r − 1�r + �cr − 1�2

2�r − 1�
. �18�

This threshold is unphysically large for c�1 and so it would
be inaccessible to mechanical experiments in this limit. But
when r=2 and c=1, we have �c=�2, in agreement with the
numerical results presented in Fig. 4 and possibly within the
range of experiments.

The behavior of the system for both small and large val-
ues of the deformation can again be analyzed. Before the

threshold, we have 	=�xz=0, and �zz=1. Consequently

f =
1

2
��1 + �xx

2 +
1

�xx
2 � , �19�

� = ���xx −
1

�xx
3 � , �20�

which is the 2D rubber elastic response seen experimentally
�2� in the case where the director and layer normal are rigidly
anchored, and described theoretically in this framework in
�9�. After the threshold we have for �xx�1

�zz  � r

r − 1
�1/4 1

�xx
, �21�

	  �/2 − � r

r − 1
�1/4 1

�xx
, �22�

�xz 
��r − 1�r

�xx
2 , �23�

f 
�

2r
�xx

2 . �24�

This limit is again extreme and unphysical, but useful for
understanding trends. The result is the same as that for a
nematic rubber that is being stretched perpendicular to its
director, the director subsequently rotating to be parallel to
the applied elongation, the x direction. The 1 /r reduction in
the effective modulus arises because there is an effective xx
elongation of �r on director rotation and the effective exten-
sion with respect to this state is only �xx /�r.

The induced shear at the threshold �xx=�c increases infi-
nitely quickly with stretch, as is the case in theory and ex-
periment �16� for the response at the threshold when nematic
elastomers are stretched perpendicular to their initial direc-
tor. A symmetry argument shows that this must be the case:
the instability is insensitive to the signs of the angle 	 and
the shear �xz, and the stretch �xx does not distinguish among
these signs. Thus one must have �xz

2 ��xx−�c and 	2��xx
−�c �or higher even powers of �xz and 	�. On taking roots,
one has �xz� ���xx−�c and 	� ���xx−�c, that is, singu-
lar growth at �c.

The results here clearly show a nonmonotonic stress-
strain relation that is not seen, for instance, in theory or ex-
periment for Sm-A elastomers at their instability under a �zz
extension along their layer normal �see Sec. III C below�. In
the zz extension case, the layer normal rotates away from the
extension direction to allow in-plane stretch and shear. But in
rotating away, the layer normal takes the nematic director
with it and thus towards the contraction diagonal associated
with the shear that is growing in a singular fashion. For
prolate chains, this compression along the director of the
naturally long dimension of the chain distribution costs ad-
ditional energy. This is still a lower energy path than that
associated with layer extension which would be suffered if
layers did not rotate. By contrast here in the case of in-plane
stretch, Fig. 5 shows that when director rotation takes place,

σ/µ

0

0.5
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1.5

1 1.2 1.4 1.6 1.8
λxx

λxz

0

0.1

0.2
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1 1.2 1.4 1.6 1.8
λxx

λzz

0.6

0.7

0.8

0.9

11 1.2 1.4 1.6 1.8
λxx

θ

0
0.2
0.4
0.6
0.8
1

1 1.2 1.4 1.6 1.8
λxx

FIG. 4. �Color online� The nominal shear stress, rotation angle,
and deformation tensor components for an imposed �xx deforma-
tion. The key is the same as in Fig. 2. Note that �xz0 and 	0
for c�1 �dashed �red� line�.
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it is instead towards the direction of the extension diagonal
of the induced xz shear and thus the naturally longer dimen-
sion of the chain distribution is more accommodated. This
shear grows in a singular fashion. The consequent slow down
in the growth of the elastic free energy is sufficient to make
the slope of the stress-strain relation negative.

Just as for the van der Waals gas, this type of nonmono-
tonic stress-strain curve is mechanically unstable to dispro-
portionation. It can be rectified by taking a mixture of the
rotated and unrotated states, and making a Maxwell con-
struction on the stress-strain relation. Experimentally, it is
expected that there will be a plateau in mechanical behavior
that is reversible. This is highly unusual elastic behavior for
a solid.

To carry out the Maxwell construction, we define f̂ = f
− ��p�xx+ f0�, i.e., we subtract from the free energy the com-
mon tangent that touches f��xx� at the points of coexisting
strain with the same engineering stress �p, and we determine

�p and f0 such that f̂ just touches f̂ =0 at two points. An

illustration of f̂ which highlights its nonconvexity is shown
in Fig. 6, together with an illustration of the deformation
gradient at the two minima. The stress is also shown, with a
plateau, that is formed by mixing the two deformation gra-
dients illustrated. The anticipated microstructure may be as
illustrated in Fig. 7, however the effects of surface energy
and interfacial regions may lead to a different structure. The
actual region of the singular shear and director rotation seen
in Fig. 4 is thus jumped across and these interesting re-
sponses may not be observable.

The value of the threshold provides a useful test for the
value of the modulus at. As no threshold has been observed
through in-plane elongation experiments, it is thought that at
should be comparable to or larger than �. For some samples,
these stretching experiments have been performed up to a
strain of �xx=2.5, but no deviation from linearity has been
observed �17�. This suggest that the anchoring is so strong in
some elastomers, that the sample ruptures before the director
and the layer normal become unlocked.

C. Imposed �zz

It is well-known that in liquid Sm-A �18� and in elasto-
meric Sm-A �2� there is an instability when stretching paral-
lel to the layer normal. For small deformations the elastomer
simply elongates, however for large deformations above a
threshold, layers start to rotate, and the sample undergoes
effective in-plane shear, as first predicted for elastomers
within continuum elasticity �19� and previously analyzed in
the framework of rubber elasticity �9� but with n and k rig-
idly locked �c=��. When c is finite, elongation parallel to
the layer normal still results in the same instability, as is
already known from Lagrangian elasticity methods �7�. More
unusually, as a consequence of finite c, we predict that com-
pression ��zz�1� can also result in a rotational instability,
but only of the director with an unrotating layer system.

1. Elongation (�zz�1)

Contrary to the deformations considered thus far, elonga-
tion along the initial layer normal generates layer rotation,
and we are compelled to distinguish between director and
layer rotation. Thus we take � to denote the angle of the
director with respect to the current layer normal, and we
introduce � as the angle by which the layers rotate relative to
the initial layer normal. The deformation gradient tensor

�= =	
�xx 0 0

0
1

�xx�zz
0

�zx 0 �zz


 �25�

must be assumed since �zx shears are those that produce
layer rotations, see Eq. �4�. This awkward form of the defor-
mation gradient can be decomposed to reveal the true defor-
mations by incorporating a rotation matrix. We first deform
the system by �= which we take to be as in the previous
cases, i.e. as in Eq. �8� with stretches and instead an xz shear.
The layer normal, given this type of deformation, is as yet
unrotated. We then perform a body rotation on both the elas-
tomer and the director, which of course leaves the free en-
ergy invariant. The rotation can be chosen to transform the xz
shear of �= into the zx shear of �= in �25�. The overall defor-
mation is made up as follows:

1 2λxx

FIG. 5. An illustration of the rotation of the director, and the
sympathetic shears for an imposed �xx deformation, corresponding
to the solid �green� line in Fig. 4.

σ/µ
A B

0
0.2
0.4
0.6
0.8
1

1 1.2 1.4 1.6 1.8 2
λxx

f̂/µ

A B0
0.01
0.02
0.03
0.04
0.05

1 1.2 1.4 1.6 1.8 2
λxx

FIG. 6. �Color online� An illustration of the free energy and
stress for the nonmonotonic stress strain. The curve illustrated has
�b ,c ,r�= �60,1 ,2�. Here �A=1.34, �B=1.87, and �p=0.978�.

λA λB

λ

n n

λA < λ < λB

FIG. 7. An illustration of a possible microstructure that would
result from the applied in-plane deformation. Depending on the cost
of the interface, the disproportionation illustrated here may happen
in several regions in the sample. The region where the microstruc-
ture forms may be opaque as illustrated.
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�= = R= ��� · �= ; �= = 	�xx 0 �xz

0 �yy 0

0 0 �zz

 , �26�

where R= ��� represents a rotation through an angle � about y.
At this point we can see that all mechanical deformations of
Sm-A can be reduced to the three of Fig. 1—others can be
reduced to these by suitable rotations.

Figure 8 shows the development of the �ij, including �zx
in response to �zz. The last sketch has the �xz marked in as it
would appear in the frame of the body. The rotation angle �
can be determined by demanding that the �zx component is
zero. Practically, this is done by putting in the explicit form
for R= in the above, evaluating �= =R= T ·�= and inspecting �zx. It
is also clear geometrically from the second to last frame of
Fig. 8 that to convert �= to the lab frame �= one needs to rotate
by the shear angle �=tan−1��xz /�zz�, resulting in cos �

=
�zz

��xz
2 +�zz

2 . The connection between the new deformation

components �ij and the old �ij is then

�xx =
�xx�zz

��xz
2 + �zz

2
, �27�

�zx =
�xx�xz

��xz
2 + �zz

2
, �28�

�zz = ��xz
2 + �zz

2 , �29�

see �9� for explicit discussion.
Recall that � is the angle between the layer normal and

the director. Since the body and the system of layers is ro-
tated by −�, the director can be expressed as

n = �sin�� − ��,0,cos�� − ��� , �30�

so that after rotation by � in �26� it becomes n
= �sin��� ,0 ,cos����. After this transformation is performed,
we obtain the free energy density again given by Eq. �9� with
�ij→�ij and 	→�. However, we do not impose �zz, but
still impose �zz, whereupon �zz=��zz

2 −�xz
2 on rearranging

�29�. The behavior of the system can be analyzed numeri-
cally and results for this analysis are presented in Fig. 9.
Note we still see a threshold behavior, but now in addition a
rotation of the director with respect to the layer normal �.
From the decomposition discussed above, it is clear the ro-
tation of the director with respect to the layer normal arises

because of the effective xz shear. Consequently we expect a
nonzero value of � on symmetry grounds as observed in
Sec. III A.

There are several ways that the position of the threshold
can be computed. One method is to expand the free energy
density for small values of �. We can then minimize with
respect to �, and substitute in the minimal value. It is then
possible to minimize over �xx, and substitute this back into
the free energy. Only �xz remains to be minimized over.
Setting the second derivative of this expression with respect
to �xz to zero at �xz=0 then gives the equation for the
threshold, because it gives the point where the level sets
change from being convex to concave. This results in the
following polynomial for the critical value �c of �zz:

b2r��c − 1�2�c
4 − b��c − 1��c

2�2r − 1� − �r − 1���c
3 − 1�

+ cr�c��b − r + 1��c
3 − b�c

2 − 1� = 0. �31�

The terms in c have been collected together here, so that it is
clear that for c�1 the same polynomial in square brackets as
in the locked director case �9� is recovered. In that case there
was only an instability if the reduced layer spacing modulus
was large enough, b�r−1. Now if the director is no longer
locked to the layer normal, finite c, then there is naturally an
instability for even smaller values of b since the lower en-
ergy route of rotation is more accessible if the director can
rotate towards the extension diagonal associated with the
concomitant shear.

In the limit B�at ,� for which �c exists,

�c  1 +
2r − cr − 1 + ��cr + 1��4r2 + cr − 4r + 1�

2br
.

�32�

For r=2 and b=60 we have

lim
c→�

�c  1 +
r

b
 1.033, �33�

1 1.2λzz

ζ

Λxz

FIG. 8. An illustration of the rotation of the director, and the
sympathetic shears for an imposed �zz elongation. The �xz shear is
shown in the frame of the layer system. � is the shear angle and the
rotation angle to go from the lab to the layer frames.
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FIG. 9. �Color online� The nominal shear stress, rotation angle,
and deformation tensor components for an imposed �zz�1 defor-
mation. The key is as in Fig. 2. Note that the dashed �red� curve for
� lies above zero for �zz exceeding the threshold, although this is
hard to see because � is very small.
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lim
c→1

�c  1.028, �34�

where the limits have been taken from Eq. �31�. Conse-
quently the experimental evaluation of this threshold is not
sensitive to the value of c, and does not discriminate between
the weak anchoring, and the locked layer normal theories.

For small deformations �before the threshold is reached�
we have

�zx = � = 0, �35�

�xx =
1

�zz
, �36�

f =
1

2
B��zz − 1�2 +

1

2
�� 2

�zz
+ �zz

2 � , �37�

which is identical to the locked layer normal case.
Before moving on to compression, we find it worthwhile

to compare our results to the available experimental findings
and other theoretical predictions. The stress-deformation
curves for B�� are in absolute agreement with the experi-
mental curves by Nishikawa and Finkelmann �1� as well as
the theoretical predictions of Refs. �9,7�. The results, or at
least their interpretation, differ, however, as far as � is con-
cerned. As mentioned above, the rubber-elastic model of Ref.
�9� assumes that the layer normal and the director are rigidly
locked and thus inevitably produces �=0 for any value of
�zz. From their x-ray data, Nishikawa and Finkelmann con-
clude that there is no relative tilt between layer normal and
the director below and above the threshold. The Lagrangian
model of Ref. �7� predicts nonzero but small � above the
threshold, like in the dashed �red� curve in Fig. 9. Given that
the angle-resolution in the experiment of Nishikawa and
Finkelmann was of the order of one degree, it is possible that
there was Sm-C like tilt in the experiment that was too small
to detect if � followed a curve similar to the dashed �red�
curve in Fig. 9. In this case, there is no contradiction be-
tween the experimental data and the theoretical findings of
Ref. �7� and the present paper.

2. Compression (�zz�1)

For the compression case we again use the free energy
expression of Eq. �9� since in the absence of a �zx there is no
layer rotation. Compression along the layer normal is re-
sisted by the layer spacing potential. There is also a nematic
rubber elastic penalty for the chain compression. Nematic
elastomers in theory and experiment �20� are known to re-
duce their elastic energy on compression along the director
by rotation of the director, thereby presenting a shorter di-
mension of their chain distribution to the imposed strain. We
find an analogous effect here. Numerical results for the com-
pression case are shown in Fig. 10, and illustrated in Fig. 11.

There is again a threshold, �c, at which rotation starts in
the weak anchoring model. The threshold obeys the follow-
ing polynomial:

cr�c + br�c
2��c − 1� + �r − 1���c

3 − 1� = 0. �38�

There is always a solution to this equation, that is, in prin-
ciple an instability against compression should always exist.
For B�at, the solution is

�c  1 − at/B , �39�

which provides an important test for the magnitude of the
parameter at. For example, if at�� and B�60�, then �c
0.983, i.e. a compression of a few percent. For large c the
instability moves to �unphysically� large compressions, �c
�0. At small deformations, before any rotational instability,
the behavior is exactly as in the elongation case, given in Eq.
�37�.

The stress-deformation curve shown in Fig. 10 is again
nonmonotonic, so is unstable in the region of negative slope.
This unphysical feature can be resolved by resorting to a
Maxwell construction as explained in Sec. III B. As in Sec.
III B, this construction leads to the prediction of a plateau in
the stress-deformation curve and microstructure that features,
unless boundary conditions prevent this, a mixture of sheared
and compressed regions.

Reference �7� focused on stretching along the layer nor-
mal as in the experiments of Nishikawa and Finkelmann, and
its authors chose not to consider compression along the layer
normal. However, from the equations of Sec. III of Ref. �7�,
it is straightforward to see that the Lagrangian model also
predicts an instability towards shear for compression along
the layer, uzz�0, where u= = 1

2 ��= T�= −�= � is the usual strain ten-
sor. The thresholds uzz

c for the onset of uxz shear are deter-
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FIG. 10. �Color online� The nominal shear stress, rotation angle,
and deformation tensor components for an imposed �zz deforma-
tion. The key is as in Fig. 2. Note that the stress-deformation curve
features a slight negative slope that is hard to see.

1 0.84λzz

FIG. 11. An illustration of the rotation of the director, and the
sympathetic shears for an imposed �zz�1 compression.

SMECTIC-A ELASTOMERS WITH WEAK DIRECTOR … PHYSICAL REVIEW E 78, 011703 �2008�

011703-7



mined by the values of uzz for which the effective modulus
rR�uzz� in the tilt energy density passes through zero from
positive to negative. For the precise definition of the effec-
tive modulus, which is related to the parameter at defined via
Eq. �5�, we refer to Eq. �3.10b� of Ref. �7�. The equation
rR�uzz�=0 has 2 solutions, the one given in Eq. �3.11� of Ref.
�7�, and a corresponding one with the minus in front of the
square root replaced by a plus. The solution with the plus
pertains to compression and was, therefore, not discussed in
Ref. �7�. Based on the available experimental data for fluid
�15� and elastomeric smectics �14�, the Lagrangian theory of
Ref. �7� produces the estimates uzz

c −0.025 and uzz
c 

−0.0025, respectively, which are consistent with estimates
for �c based Eq. �39� and the typical values for at and B
quoted in Sec. II.

IV. DISCUSSION AND CONCLUSION

We have explored the consequences of having a weakly
anchored director in a model of a Sm-A elastomer for three
deformations: in-plane shear, in-plane elongation, and defor-
mation parallel to the layer normal. For the in-plane shear, it
is found that the director rotates toward the extension diag-
onal and that initially the rotation angle is proportional to the
amplitude of the shear applied. For in-plane elongation, and
for compression and elongation parallel to the layer normal,
the possibility of rotation of the director leads to the predic-
tion of instabilities of the system to director rotation.

The stress-deformation curves predicted by our model for
in-plane elongation and for compression parallel to the layer
normal are nonmonotonic. Since a region of negative slope
in the stress-deformation curve is unstable, this behavior is
unphysical and will not be seen experimentally. Instead the
elastomer should form a mixture of two different deforma-
tions, and exhibit a plateau in the stress-deformation curve,
as illustrated in Sec. III B. In the case of imposed in-plane
elongation, disproportionation has not been reported experi-
mentally; it may, however, be possible to engineer elas-
tomers in which this behavior could be observed.

The instability toward the development of shear for elon-
gation along the layer normal has been discussed theoreti-
cally in earlier papers �7,9�. Here, we also predict an insta-
bility to rotation of the director under compression along the
layer normal. This could be analyzed experimentally using
the samples in which the director and layer normal are par-
allel to the normal to the film as reported in �5�. The thresh-
olds at which the different instabilities occur provide a useful
way to determine the model parameters experimentally, and
to find the value of the parameter at.
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M.W.� and the National Science Foundation under Grants
No. DMR 0404670 and No. MRSEC DMR-0520020 �T.C.L.
and O.S.�. We thank Dominic Kramer for discussing in-plane
extension experiments of smectic elastomers.

APPENDIX: GENERAL 2D MODEL FORMULATION

We give here a practical method of calculating the free
energy in the complex situations of extensions, shears and
rotation. Simplification is possible because the deformations
occur in the xz subspace of �= and are denoted by

G= = ��xx �xz

�zx �zz
� , �A.1�

with a single y deformation ��yy=det�G= �−1� that acts to pre-
serve volume. Using this notation, and assuming that the
director n remains in the xz plane, then the nematic free
energy density is

fel =
1

2
��Tr�G= · �=0 · G= T · �=−1� + �det G= �−2� . �A.2�

The layer normal can be calculated �9� as follows:

k � �= −T · z = ��= · x����= · y� =
�G= · x� � y

det G=
, �A.3�

��= −T · z� =
�G= · x�
det G=

. �A.4�

The last term we require is the dot product of n and k to
calculate the angle between the layer normal and director.

n · k =
��G= · x� � y� · n

G= · x � y
=

��n � �G= · x�� · �n � �G= · x��
�G= · x�

= �1 − �n · G= x̂�2�1/2, �A.5�

where G= x̂ denotes the unit vector G= x / �G= x�. Combining the
above results produces the following total free energy den-
sity expression:

f =
1

2
��Tr�G= · �=0 · G= T · �=−1� +

1

�det G= �2�
+

1

2
B�det G= /��G= · x�2 − �n · G= · x�2�1/2 − 1�2 +

1

2
at�n · G= x̂�2.

�A.6�

This expression no longer involves the cofactor of the defor-
mation gradient.
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